Homework 7

Feng Lv

October 23, 2017

A. Using resolution to prove that $(A \lor B) \land (\neg A \lor C) \land (\neg B \lor D) \land (\neg C \lor G) \land (\neg D \lor G) \vDash G$

Prove: we can prove it by illustrating that $(A \lor B) \land (\neg A \lor C) \land (\neg B \lor D) \land (\neg C \lor G) \land (\neg D \lor G) \land \neg G$ is unsatisfiable. According to the **soundness of resolution**, we just need to prove the resolution closure of clauses in above sentence contains the empty clause.

The resolving process is below:

$$\frac{\neg C \lor G, \neg G}{\neg C}, \quad \frac{\neg D \lor G, \neg G}{\neg D}, \quad \frac{\neg B \lor D, \neg D}{\neg B}, \quad \frac{A \lor B, \neg B}{A}, \quad \frac{\neg A \lor C, A}{\neg C}, \quad \frac{\neg C, C}{\phi}$$

 $Thus, \ (A \lor B) \land (\neg A \lor C) \land (\neg B \lor D) \land (\neg C \lor G) \land (\neg D \lor G) \vdash G.$

Therefore, according to the soundness of resolution, we have $(A \lor B) \land (\neg A \lor C) \land (\neg B \lor D) \land (\neg C \lor G) \land (\neg D \lor G) \vDash G$.

B. How many semantically distinct 2-CNF clauses can be constructed from n proposition symbols?

Solution: n proposition symbols totally have 2n distinct literals. Therefore, the number of combinational cases from these literals is $\binom{2}{2n} = 2n^2 - n$. However, we don't consider about clauses like $A \lor A$, so the number need plus 2n. Additional, all the clauses like $\neg A \lor A$ are logically equivalent, so we need subtract n-1.

Therefore, the totally number of distinct 2-CNF clauses (denoted as N) is:

$$N = 2n^{2} - n + 2n - (n - 1) = 2n^{2} + 1$$

C. Prove that propositional resolution always terminates in time polynomial in n given a 2-CNF sentence containing no more than n distinct symbols.

Prove: Trivially, two 2-CNF clauses resolving are always produce a 2-CNF clause. For instance, $\frac{A \lor B, \neg A \lor C}{B \lor C}$. According to the conclusion in **b**, the totally number of distinct 2-CNF clauses is $(2n^2 + 1)$. Then, the total number of possible distinct resolutions is $(2n^2 + 1)^2$. Also, any resolution step over two 2-CNF clauses is one of these $(2n^2 + 1)^2$ distinct resolutions. Therefore, this process terminates in time polynomial in n given a 2-CNF sentence containing no more than n distinct symbols.

D. Explain why your argument in (c) does not apply to 3-CNF.

Solution:

The algorithm above does not apply to 3-CNF because 3-CNF clauses are not closed under resolution operation. For example, $\frac{A \lor B \lor C, \neg A \lor D \lor F}{B \lor C \lor D \lor F}$. Therefore, this property does not apply to 3-CNF clauses.